

INDIAN SCHOOL AL WADI AL KABIR

Mid Term Examination (2024-25)

Class: VIII Sub: MATHEMATICS Max Marks: 80

Date: 206/09/24 Set- II(ANSWER KEY) Time: 2 ½ hours

	Section A: Multiple Choice Question (Q.1 to Q.15) of 1 mark each							
1.	If 8p -	5= 2p +13, then	the v	value of p is				
	A		В		С	3	D	
2.	Which of the following numbers square root ends with 9?							
	A		В		С		D	2401
3.	The sta	andard form of 0.0	0000	5789				
	A		В	5.789×10 ⁻⁵	С		D	
4.	Additive inverse of $\frac{5}{7} \times \frac{-2}{15}$							
	A	$\frac{2}{21}$	В		С		D	
5.	The value of $[\{ (2^3)^2 \div 2^5 \} + (2^0 + 3^0)^2$							
	A		В		С	6	D	
6.	In parallelogram ABCD, $\angle A = 118^{\circ}$, then the measure of $\angle B$ is:							
	A		В	62 ⁰	С		D	
7.		y the rational numented by the point			1 3	B -9 -8 -6 -5 - 13 13 13 13 13 1	+ A 4 3	-2 -1 0 1 13 13 13

	A		В	$\frac{-3}{13}$, $\frac{-7}{13}$, $\frac{-10}{13}$	С		D	
8.		ngles of a quadrila angles is:	iteral	are equal and the otl	her	angles are 76 ⁰ and 11	L O º.	The measure of
	A		В		С		D	87 ⁰
9.	The value of $\left(\frac{3}{5}\right)^{-3}$							
	A		В	125 27	С		D	
10.						people about their favo or representing this or		
	A		В		С		D	54 ⁰
11.	The value of $\frac{\sqrt{144\times25}}{\sqrt{36}}$							
	A		В	10	С		D	
12.	The p	roperty used in $\frac{-5}{11}$	+($\frac{1}{5} + \frac{-2}{9}$) = $(\frac{-5}{11} +$	1 5	$+\frac{-2}{9}$		
	A		В		С	Associativity	D	
13.	How n	nany non-square r	umb	ers are there betweer	า 4!	5 ² and 46 ² ?		
	A		В	90	С		D	
14.		The ratio of boys and girls in the class is 9:5. The number of boys is 12 greater than number of girls. The number of girls is:						
	A		В	15	С		D	

15.	In figu	ire the value of m	is			125 0	λ	
							/ \	
								1300
						\mathcal{L}_{m}		
	A		В		С	1050	D	1
Q16.		Source b	ased	Question -5 Marks	1			
				carnival. In one of the Sanjay and Rohit decid			saffr	on 6 YELLOW
	game			Based on the informa			GREEN 3	RED VIOLET 5
								5
I	If the spinner stops at odd number, they would get ₹10. The probability of getting ₹10 is:				ing ₹10 is:			
	A		В		С	<u>5</u>	D	
II	The probability of getting green sector with odd number is:							
	A		В	$\frac{1}{6}$	C		D	
				6				
III		reen and blue are umber is:	prim	ary colours. The prob	abi	ility of getting primary	colo	our sector with
	A	$\frac{1}{3}$	В		C		D	
		3						
IV	Which	of the following ca	an no	ot be the probability o	f a	n event?		
	A		В		C	$\frac{8}{7}$	D	
V	If the	spinner stops at se	ector	with any colours pres	sen	t on the Indian flag, S	anja	y and Rohit
				oability of winning ₹25			-	

	A		В	$\frac{1}{2}$		C		D	
	S	ection B: Short A	nswe	r Questions (Туре – 1) of 2 ma	arks each (Q.17	to C	2.21)
17.	2m =	14 (½) m= 7 (1/2)						
	$m^2-1 = 7^2-1 = 49-1 = 48(\frac{1}{2})$								
	$m^2+1 = 7^2+1 = 49 + 1 = 50(\frac{1}{2})$ The required Pythagorean triplet (14,48,50)								
18.	Exterior angle = $\frac{360^0}{n} = \frac{360^0}{8} = 45^0 (\frac{1}{2} + \frac{1}{2})$								
	-Interior angle = $180^{0} - 45^{0} = 135^{0}$ (Linear Pair) 45^{0} ($\frac{1}{2} + \frac{1}{2}$)								
19.	$\frac{3}{7} \times \frac{-5}{4} + \frac{3}{7} \times \frac{9}{3}$ $3 \times (-5) = 9$								

19.
$$\frac{3}{7} \times \frac{-5}{4} + \frac{3}{7} \times \frac{9}{3}$$

$$\frac{3}{7} \times (\frac{-5}{4} + \frac{9}{3}) \quad (1/2) \quad LCM = 12$$

$$\frac{3}{7} \times (\frac{-5 \times 3}{4 \times 3} + \frac{9 \times 4}{3 \times 4}) \quad (1/2)$$

$$\frac{3}{7} \times (\frac{-15}{12} + \frac{36}{12}) \quad (1/2) \quad \frac{3}{7} \times \frac{-21}{12} = \frac{-3}{4} \quad (1/2)$$

20.
$$\left[\left(\frac{3}{11} \right)^{-3} \times \left(\frac{3}{11} \right)^{5} \right] \div \left(\frac{3}{11} \right)^{4} = \left(\frac{3}{11} \right)^{2} \div \left(\frac{3}{11} \right)^{4} (1m) = \left(\frac{3}{11} \right)^{-2} (\frac{1}{2}) = \left(\frac{11}{3} \right)^{2} (\frac{1}{2})$$

21.
$$2(t+5) = 7(t-3) - 14$$

 $2t+10 = 7t - 21 - 14$ (1m)
 $2t-10 = 7t - 35$
 $2t - 7t = -35 + 10(1/2)$
 $-5t = -25$ $t = -25/-5 = 5(1/2)$

Section C: Long Answer Questions (Type - 1) of 3 marks each (Q.22 to Q.27)

22.	$7^{-4} \times 125^{-1} \times p^4$				
	$\frac{7^{4} \times 125^{1} \times p^{6}}{49^{1} \times 5^{2} \times p^{4}} (11/2) \frac{7^{4} \times 5^{3} \times p^{6}}{7^{2} \times 5^{2} \times p^{4}} (1) 7^{2} \times 5^{1} \times p^{4} (1/2) = 245p^{4}$				
23	Pairing digits (½)		83		
	Getting 8 (1)		1000		
	Getting 3 (1)	8	6889		
	$\sqrt{6889} = 83 (\frac{1}{2})$		64		
			489		
		163	489		
			0		
24.	Let the numbers be 7x and 3x (1/2)				
	A.T.Q $7x - 3x = 48(1)$				
	$4x = 48 (\frac{1}{2})$ $X = 12 (\frac{1}{2})$ The numbers are $7x 12 = 84$ and	d 3 x 1	.2 = 36 (½)		
25	In parallelogram, diagonals bisect each other.				
	$y + 3 = 6 (\frac{1}{2})$ $y = 6-3 = 3cm (\frac{1}{2})$				
	$2x + y = 7 (\frac{1}{2})$ $2x = 7-3 = 4 (\frac{1}{2})$ $x = 2cm (\frac{1}{2})$				
	Z= 8 cm (Opposite sides of parallelogram are equal) (1/2)				
26					
26.	$\left(\frac{-3}{7}\right)^{2m+1}\times\left(\frac{-3}{7}\right)^7=\left(\frac{-3}{7}\right)^{14}$				
	$\left(\frac{-3}{7}\right)^{2m+1} \times \left(\frac{-3}{7}\right)^7 = \left(\frac{-3}{7}\right)^{14}$ $\left(\frac{-3}{7}\right)^{2m+8} = \left(\frac{-3}{7}\right)^{14} (1)$				
	On equating powers, $2m + 8 = 14(1)$ $2m = 14 - 8 = 6(\frac{1}{2})$ $m = 6/2$	2 = 3 (1/2)		
27	$\frac{-3}{8}$, $\frac{-1}{8}$, $\frac{5}{8}$ and $\frac{7}{8}$ Number line -1 mark rational numbers (4 x ½=2)				

& Case study (Q.34 &35) of $\boldsymbol{4}$ marks each

Section D: Long Answer Questions (Type -2) (Q.28 to Q.33)

28.

Let the multiples be x, x+7, $x+14(\frac{1}{2})$

x+x+7+x+14 = 777(1m)

 $3x + 21 = 777(\frac{1}{2})$

 $3x = 777-21(\frac{1}{2})$

 $3x = 756(\frac{1}{2})$

 $X = 756/3 = 252(\frac{1}{2})$

252,259,266 are the required

multiples(½)

OR

Let the multiples be x-7, x, x+7(1)

x+x-7+x+7 = 777(1m)

 $3x = 777(\frac{1}{2})$

X = 777/3 = 259(1/2)

252,259,266 are the required multiples (1)

29.

In parallelogram, opposite sides are parallel and equal

 $3p = 21cm(\frac{1}{2}) P = 7cm(\frac{1}{2})$

 $4q + 5 = 29(\frac{1}{2})$ 4q = 29 - 5 = 24cm

 $q = 6 cm(\frac{1}{2})$

 $r = 88^{\circ}$ (opposite angles are equal) (1/2)

 $s= 56^{\circ}$ (alternate interior angles are equal) (1/2)

 $m+56^0+88^0 = 180^0$ (adjacent angles are supplementary) (1/2)

$$m + 144 = 180$$
 $m = 180-144 = 36^{0}(\frac{1}{2})$

30

Sport item	No. of students	Fraction	Central angle
Cricket	60	$\frac{60}{180}$	$\frac{60}{180} \times 360 = 120^0$
Foot ball	45	$\frac{45}{180}$	$\frac{45}{180} \times 360 = 90^0$
Badminton	40	$\frac{40}{180}$	$\frac{40}{180} \times 360 = 80^0$
Table tennis	35	35 180	$\frac{35}{180} \times 360 = 70^0$
Total	180		

	Table – 2 marks Drawing pie chart -2 marks		
31	$\frac{4}{5}$ and $\frac{5}{6}$. LCM= 30(1/2)		
	$\frac{4\times 6}{5\times 6} = \frac{24}{30} \qquad \frac{5\times 5}{6\times 5} = \frac{25}{30} \qquad (1/2+1/2)$		
	$\frac{24 \times 10}{30 \times 10} = \frac{240}{300} \qquad \frac{25 \times 10}{30 \times 10} = \frac{250}{300} (\frac{1}{2})$		
	Any four rational numbers (between 0.8 and 0.83) (4 $\times \frac{1}{2}$ =2)		
32.	4032 = 2×2×2×2×2×3×3× 7×	2	4032
	Each pair of factors ($\frac{1}{2}$) each and getting $7(\frac{1}{2})$	2	2016
	4032 to be multiplied by 7 ($\frac{1}{2}$) $\sqrt{4032 \times 7} = 2 \times 2 \times 2 \times 3 \times 7(\frac{1}{2})$	2	1008
	= 168(½)	2	504
		2	252
		2	126
		3	63
		3	21
		7	7
			1
33.	$x = 180^{0} - 85^{0} = 95^{0}$ (linear pair) (1m)	~	
33.	$y = 180^{\circ} - 115^{\circ} = 65^{\circ}$ (linear pair) (1m)	85	·
	$w = 180^{0} - 45^{0} = 135^{0}$ (linear pair) (1m)		7
	$x + y + z + w = 360^{\circ}$ (exterior angle property)		115° Jy
	z= 360 - (95 + 65 +135) = 360 - 295= 65 ⁰ (1m)		

	Or fourth angle = $360 - (85 + 45 + 115) = 115$	$Z = 180-115 = 65^{\circ}$		
34.	Case Study-1		29	

2	850
	4
49	4 50
	441
	9

Getting $2(\frac{1}{2})$, getting $9(\frac{1}{2})$ remainder $9(\frac{1}{2})$

- Number of plants left = 9((1/2))I.
- II. Number of rows = 29 (1m)
- $1+3+5+7+9+11+13+15+17+19+21=11^2=121$ III.

35. Case Study-2

I.
$$\left(\frac{1}{5}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} - \left(\frac{1}{7}\right)^{-1} = 5^2 + 3^2 - 7(1 \text{ m}) = 25 + 9 - 7(\frac{1}{2}) = 27(\frac{1}{2})$$

II. The multiplicative inverse of
$$\left[\left(\frac{8}{11} \right)^{-2} \times \frac{8}{11} \right]^5$$
 The multiplicative inverse of $\left(\frac{8}{11} \right)^3 = \left(\frac{8}{11} \right)^{-3}$ (½+½)

III. a) $8.34 \times 10^{-4} = 0.000834$ (b) $5.132 \times 10^5 = 513200(½+½)$

III. a)
$$8.34 \times 10^{-4} = 0.000834$$
 (b) $5.132 \times 10^{5} = 513200(\frac{1}{2} + \frac{1}{2})$
